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Abstract

How much of aggregate productivity growth is driven by common productivity improvements across

firms and how much is driven by the better selection of firms? In this short paper, I study the non-

parametric identification of these two sources of productivity growth. I propose a framework that nests

various endogenous and exogenous growth models and requires only (mild) restrictions on exit behavior

and the shocks that drive heterogeneity in productivity. In this framework, separate identification of

selection and a common, time-varying productivity growth term involves solving two selection biases. The

first is a static or compositional selection bias whereby average productivity can increase due to entry

and exit in the absence of any within-firm changes in productivity. The second, dynamic selection bias,

arises from the persistence of productivity shocks and is driven by mean reversion. I show how a weighted

average of within-plant productivity changes allows separate identification. Weights are chosen such that

the dynamic selection bias exactly cancels and can be found by constructing a stationary distribution of

the underlying productivity shocks from a synthetic panel of firms over time. I show how the identification

approach can be extended to studying cohort effects and more general forms of heterogeneous productivity

growth.
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Introduction

Productivity growth is widely seen as the major driver of economic growth.1 Productivity growth, in turn, is

driven by changes in the productivity distribution across all firms in the economy, which can be decomposed

into (1) changes in productivity among surviving firms and (2) changes in productivity due to the exit of

incumbent firms and the entry of new firms (selection).

How much of aggregate productivity growth is driven by common productivity improvements across firms

and how much is driven by the better selection of firms? This question is at the heart of modern theories

of economic growth (e.g. Acemoglu et al. 2018; Luttmer 2007). As I formalize in this paper, separate

identification of selection and productivity growth is difficult because of at least two different forms of

selection bias: a “static” and a “dynamic” selection bias. The “static” selection bias arises from changes in

the productivity distribution due to changes in the composition of firms. For example, if less productive

firms are more likely to exit or entering firms are more productive, average productivity can increase in the

absence of any firm-level changes in productivity. A natural response would be to look only at within-firm

productivity changes, which indeed can fully control for static selection bias under the right conditions on

the timing of decisions and revelation of information. However, within-firm productivity changes are still

biased estimates of common productivity growth if selection is on a persistent component. Intuitively, with

persistence in productivity, surviving firms that have seen a history of very good productivity shocks are

more likely to mean revert in the future. Similarly, young entrants may enter with lower productivity and

mean revert upwards over time. Given a strong prior that productivity changes show persistence, focussing

on within-firm productivity changes of surviving plants thus introduces a “dynamic” selection bias.

The previous literature has dealt with this identification issue mostly in structural models with (strong)

parametric assumptions on firm productivity processes and the entry and exit of firms (e.g. Clementi and

Palazzo 2016; Garcia-Macia, Hsieh, and Klenow 2019; Ottonello and Winberry 2023). In this short paper, I

study the non-parametric identification of heterogeneous productivity growth in the presence of selection.

Non-parametric identification allows to discipline drivers of economic growth more robustly and clarifies the

empirical variation that identifies them.

Specifically, I consider a production side where firm productivity can be separated into an endogenous drift

component and a - potentially highly persistent - productivity shock that drives variation in productivity

across similar firms. As I show further below, this framework nests many endogenous and exogenous growth
1For one, there seems to be a consensus in the literature that the large variations in income per capita across countries are

mostly accounted for by differences in total factor productivity (e.g. see Jones 2016), which are primarily driven by productivity
differences and by misallocation of resources. Furthermore, productivity growth is the centerpiece of most modern growth
theories (Acemoglu 2008; Jones 2022).
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models in the literature. I show separate identification of the two components without making functional

form assumptions on the arbitrarily time-varying drift component, the productivity shock process nor the

firm entry and exit processes that drive endogenous selection. The constructive identification proof in this

paper clarifies how a weighted within-plant productivity change identifies the endogenous drift component,

with appropriate weights chosen such that the “dynamic” selection bias exactly cancels out.

Technically, identification comes from two key identifying restrictions. The first restriction is that idiosyncratic

productivity shocks follow the same underlying general first-order, ergodic Markov process across firms and

time. This allows for flexible forms of error dependence (e.g. it is always very unlikely to move from the

bottom to the top of the distribution, but more likely to move from the top to the bottom), but requires this

dependence to stay fixed over time. Importantly, the setup still allows for different endogenous responses of

entry, exit and productivity trend growth to productivity shocks over time. Stated differently, the framework

treats the productivity shock as coming from a flexible exogenous process (which cannot be affected by

policy), while allowing policy (and other aggregate changes) to flexibly affect entry, exit and the endogenous

drift.

The second set of identifying restrictions concerns firm exit. While the setup allows fully flexible entry,

identification requires that (1) firms’ exit decisions are not based on future productivity shock realizations and

that (2) there is a form of common support in firms’ exit decisions.2 Together, these two assumptions guarantee

that one can always correct for any dynamic selection bias by reweighting the distribution of surviving firms’

productivities to account for the productivities of firms that exited. The common support restriction ensures

that there are always surviving firms with similar productivity as exiting firms, an assumption that can be

tested and which finds strong empirical support in firm- and plant-level data. Importantly, firms’ endogenous

exit decisions can still be based on productivity, on other observables, on future expectations as well as

unobservables.

I start with the basic setup where the trend component is the same across all firms. This nests standard

neoclassical growth models that feature exogenous aggregate productivity growth and firm selection (e.g.

Clementi and Palazzo 2016; Luttmer 2007) as well as endogenous growth models with a common productivity

growth component (e.g. Romer 1990). In this setup, identification of the common time-varying productivity

growth trend comes from the insight that all changes in the distribution of within-firm changes in productivity

can be attributed to changes in the common trend component as long as the distribution of firms over

the idiosyncratic productivity shocks is at the stationary distribution. While the initial distribution over
2The first assumption only ensures that we can directly condition on firm productivity. If exit decisions are partly based on

signals about future productivity, other common selection-correction steps can be taken. I do not explore this issue further here.
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idiosyncratic productivity shocks may be far from the stationary distribution and selection prevents it from

reaching or getting closer to the stationary distribution, the stationary distribution can be identified if the

panel is long enough and the key identifying restrictions on selection hold. Specifically, the restrictions on

selection ensure that whenever a firm selectively exits based on idiosyncratic productivity between t and t+ 1,

one can find a matching surviving firm with similar overall productivity (and hence similar idiosyncratic

productivity). In practice, this leads to constructing a stationary distribution of idiosyncratic productivity

from a synthetic panel of units over time and then enforcing the weights of this distribution to solve for

changes in the aggregate trend component.

The paper then extends the basic setup in two important directions. First, I show how one can allow for

different levels of productivity and different productivity trend growth across observed groups of firms. This

allows for heterogeneity across industries and other fixed firm characteristics. Importantly, this also allows to

identify cohort effects, generalizing the setup such that it nests an important strand of the (endogenous) growth

literature where growth is driven by imitation and learning (e.g. Asturias et al. forthcoming; Luttmer 2007;

Sampson 2016). Identification of such group-specific effects relies on constructing group-specific stationary

distributions.3 Second, I discuss how the setup can be extended to allow for heterogeneous productivity drift

across the distribution. Intuitively, the above identification argument allows to identify any changes in the

entire productivity distribution as long as the distribution of idiosyncratic productivity is at the stationary

distribution.

The structure of the paper is as follows: I start with a brief overview of the basic setup and discuss which

(endogenous) growth frameworks are and are not nested by this setup. After showing identification and

estimation in this context, I extend the basic setup in the two dimensions discussed above. The last section

concludes and discusses how the identification arguments in this paper extend to other contexts such as price

and demand dynamics.

Basic setup

Firms i at time t have productivity: Yit = Ztexp(εit). Zt captures the underlying (endogenous) drift in

productivity that - in the basic setup - is assumed to be shared across all firms and that I call aggregate

technology throughout. We only observe firms that are producing over time and given that firms enter

and exit, the productivity panel is generally unbalanced. εit is an exogenous, idiosyncratic firm-specific
3Importantly, the non-parametric identification in this paper identifies cohort effects not from productivity differences of

cohorts at entry, because there is potentially selection at entry. They are rather identified from weighted productivity differences
after a cohort is sufficiently long observed to be able to construct a stationary distribution. This means that cohort effects for
the most recent cohorts are not generally identified without stronger assumptions on entry.
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productivity process and one can think of changes in εit as knowledge shocks from the unpredictability

of R&D, learning shocks in the production process, shocks in the production process itself or any other

idiosyncratic exogenous component that affects productivity. This exogenous productivity shock process is

allowed to follow a general first-order, ergodic Markov process: εit(εit−1). This means that the probability

and magnitude of different shocks can vary systematically depending on the level of productivity of the firm.

For example, shocks in the production process may be less volatile for highly productive firms as uncorrelated

production shocks decrease in importance as the firm scales up.

Which growth models are nested by this basic setup and which are not? It is helpful to distinguish which

models are nested on the basic production side and which are nested by the identification assumptions. On

the production side, the setup is linked to models where firm productivity drives firm dynamics (Lucas 1978).

Identification is most closely linked to discrete-time firm dynamics models in the tradition of Hopenhayn

(1992), but as I show in the Appendix, in principle, the setup can also nest the production side for continuous-

time firm dynamics models in the tradition of Klette & Kortum (2004) and Aghion & Howitt (1992) such as

Acemoglu et al (2018). The key economic restriction in the basic setup is that the (potentially endogenous)

trend Zt is common across all firms. This nests standard firm dynamics models with neoclassical growth.

At the business cycle level, the setup nests standard real business cycle models with aggregate uncertainty

(e.g. Clementi & Palazzo 2016) and the identification in this paper allows to separately identify aggregate

TFP shocks from selection effects. The setup also nests models of long-run growth where Zt is exogenous

(e.g. Midrigan & Xu 2014). It also nests endogenous growth models that give a shared Zt across firms as in

classic endogenous growth models (e.g. Romer 1990), as well as endogenous growth models where Gibrat’s

Law holds, that is, trend growth is independent of firm size. The latter holds in many endogenous growth

models where Zt is common across all firms, but can vary with changes in aggregates such as prices, taxes

and R&D subsidies, such as Bento & Restuccia (2017) and many models of creative destruction (e.g. Klette

& Kortum 2004, Atkeson & Burstein 2010, Peters 2020).

The production side of the basic setup does not nest endogenous growth models where endogenous productivity

improvements are heterogeneous across firms. A recent example is Ottonello & Winberry (2023) where costs

of investments in productivity improvements do scale with firm-level productivity, but do not necessarily

scale exactly such that Gibrat’s law holds and productivity growth is constant across firms. The basic

setup also does not nest models where Zt varies across groups or cohorts as in various growth models where

entrants’ productivity increases over time, such as endogenous growth models of imitation and learning

(e.g. Alvarez, Buera, and Lucas 2013; Lucas and Moll 2014; Perla and Tonetti 2014; Buera and Oberfield

2016; Sampson 2016) and exogenous growth variants in this spirit (e.g. Luttmer 2007, Asturias et al 2023).

4



In the extensions, I show how group- or cohort-specific trend growth is relatively easily dealt with, while

more general heterogeneous productivity growth is more difficult.

Throughout, the log-additive form is going to be more useful, so that:

yit = zt + εit(εit−1)

In the following, we are interested in identifying the path of zt (up to a normalization of z0 = 0). For this, let

us first note the two main reasons why this is a difficult problem. Both reasons can be exemplified by looking

at changes in average yit over time:

1
Nt

∑
i∈Nt

yit −
1

Nt−1

∑
i∈Nt−1

yit−1 = zt − zt−1︸ ︷︷ ︸
∆z

+ 1
NS
t,t−1

∑
i∈NS

t,t−1

∆sit

︸ ︷︷ ︸
Survivor ∆s

+ 1
NE
t

∑
i∈NE

t

sit

︸ ︷︷ ︸
Entry s̄

− 1
NX
t

∑
i∈NX

t

sit−1

︸ ︷︷ ︸
Exit s̄

Changes in average yit over time only identify changes in z under the special case that average changes in s

among survivors as well as changes in average s between exiting and entering plants exactly cancel out. The

first main problem is that we expect changes in average productivity among entering and exiting plants to be

different from zero, since plant exit and entry likely depend on sit and zt and because the productivity pool

of entrants may be very different from the productivity pool of incumbent plants. For example, if there is

selection on entry and exit, we expect entering plants to be more productive than exiting plants and these

terms not to cancel out. One way to indirectly test this, is to compare yit among plants that exit next period

and yit among plants that entered this period.

Given that we observe who enters and who exits, we can also directly focus on surviving plants. The focus on

surviving plants gives the simpler problem:

1
NS
t,t−1

∑
i∈NS

t,t−1

∆yit = zt − zt−1︸ ︷︷ ︸
∆z

+ 1
NS
t,t−1

∑
i∈NS

t,t−1

∆sit

︸ ︷︷ ︸
Avg mean reversion of survivors

However, this still leaves a bias term that gives the average mean reversion in productivity across survivors.

Whether this term vanishes or is different from zero depends on where the distribution of survivors is and

how selected the group of survivors are. In general, this bias term is not zero because entering plants that

survive are not necessarily drawn from the ergodic distribution of productivity s (and hence may see either

positive or negative mean reversion) and surviving plants may see negative mean reversion over time as long
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as they are positively selected on productivity.

In the following, I discuss identification of z and then propose an estimator for the time path of z.

Identification

Proposition 1 (Main identification result). Under the following four assumptions:

1. (Common first-order stationary Markov process) s follows the same general first-order, stationary

ergodic Markov process for all i & t.

2. (Selective exit). The decision to exit after period t can flexibly depend on observables and unobservables

Xit as well as productivity sit, but may not depend on future productivity sit+1. Specifically,

P(exit) = f(Xit, sit, zt) with Pt(exit) ⊥⊥ si,t+1|si,t

3. (No complete exit over s) Pt(exit|sit) < 1∀s ∈ Supp(s)

4. (Connected support in s) For each period t, there exists at least a subset of the support of s in that

period which is fully contained in the support of all s in all future periods. Formally: ∀t,∃St ⊂ Supp(sit)

for which St ⊂ ∪τ>tSupp(siτ ).

the path zt ∀t is identified given some normalization zτ for some τ ∈ [0, T ] and max t ≡ T →∞.

Proof. To already convey the idea of a suitable estimator for the time path of zt, let us proof Proposition

1 constructively. Identification proceeds sequentially in two fundamental steps. In the first step, I show

identification of the density of the stationary distribution of s, which is identified for t→∞. In the second

step, the density of the stationary distribution is used to identify the path of zt backwards by starting at

some final time T . The density of the stationary distribution is key because it can be used to construct

weights under which a weighted difference ∆yit exactly identifies ∆zt. Specifically, there exist weights ωs

such that
∑
i∈NS

T +1,T
ω(siT )(siT+1 − siT ) = 0 (where

∑
i ωs(si) = 1). These weights recover the stationary

distribution of s. Denote by fSS(s) the density of the stationary distribution at s and by ft(s) the density

of the distribution of s at time t. Assuming that this distribution shares the support of the stationary

distribution, we have:4

lim
N→∞

N∑
i∈NS

t+1,t

fSS(sit)
ft(sit)

(
log(sit+1)− log(sit)

)
= 0

4Potentially add regularity conditions here. E.g. maybe need that sample size increase maps to strictly monotonic increase in
mass everywhere?)
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The weights are thus defined by ωs(sit) ≡ fSS(sit)
ft(sit) and are a function of the unknown density function of the

stationary distribution of s. To identify the density fSS(s), start with the distribution of plants at t0 over

known yi0. The idea is to follow survivors (as they follow the process for s), while replacing exiting plants

with plants that stay in the panel that have similar yit. More formally, denote the initial set of plants by

N0 where each plant is given a uniform weight ω̃i0 = 1
N0

. We are interested in updating N . For this, pass

on the weight of each surviving plant and redistribute the weight of each plant that exits to close plants

around them.5 This gives N1. Updating in this way allows to eventually pass on weight to plants that have

entered the economy, even if they have entered in an arbitrarily selective way. As t→∞, surviving plants

will eventually populate the entire support of s and this procedure gives a synthetic sample N∞ with weights

ω̃i∞(si∞) that directly identify the density fSS(s).

The second step of the proof takes the identified density fSS(s) and works backwards from time T . Normalizing

the final value zT , one can show that zT−1 solves a fixed point problem. Specifically:

∑
i∈NS

T,T −1

ωŝT −1(zT −1)(yiT − yiT−1) = zT − zT−1 +
∑

i∈NS
T,T −1

ωŝT −1(zT −1)(siT − ŝiT−1(zT−1)) = zT − zT−1

where the last equality holds only if the guess zT−1 is correct. It thus gives a nonlinear equation in zT−1

(since the weights and the right-hand side depend on zT−1). (Give conditions under which this has a unique

solution). One can iterate on this procedure to identify the path of zt backwards. At any point in time

t < T − 1, one can also alternatively guess zT−1 and instead of using weights at all, estimate the bias term∑
i∈NS

T,T −1
(siT − ŝiT−1(zT−1)) directly using future survivors with similar s. This alternative relaxes the

assumption of a common support with the stationary distribution and instead only requires that we can build

a sample with similar survivors - requiring a much weaker connected support.

Estimation

Estimation proceeds along the lines of the constructive identification proof. In the first step, one sequentially

builds the synthetic panel with weights ωs(sit) (which sum to 1 in each year). In principle, one can use

any standard matching estimator for passing on the weight for exiting plants. Below, I show that a Kernel

matching estimator works well, because matching is only based on one variable and the Kernel estimator

distributes the weight widely across multiple observations, reducing variance.6

One can then estimate fSS(s) using observed s in the last period T and constructed weights ω̂s(siT ). Any
5As N → ∞ and the assumption that exiting probabilities are always strictly lower than one, there always exists a plant that

is arbitrarily close to an exiting plant. Under regularity conditions on the process for s, it is sufficient to be close in a symmetric
way, that is one can for example use a Kernel. Make this more explicit.

6Note that one can readily match based on further variables to minimize the risk of model misspecification.
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standard density estimator such as a Kernel density estimator works here. To reduce variance, one can also

estimate fSS(s) on the last x periods (where x is at the discretion of the researcher). In general, for any fixed

T , the bias on the estimated weights is increasing in the persistence of the process as well as in the distance

of the initial distribution from the stationary distribution. That is, for large T and low persistence, one can

use more periods in the end to estimate fSS(s).7 Once the density is estimated, one can then proceed in

sequentially estimating the path zt. For each period t and for each guess of zt, this means one has to estimate

ft(sit(ẑt)). Again, any standard density estimator works here. One can then construct the weights according

to: ωst(sit) ≡ fSS(sit)
ft(sit) . Alternatively, one can choose not to use weights and instead directly estimate the

bias from mean reversion. In that case, one can again use any kind of matching estimator to match plants in

t with productivity s(ẑt) to future survivors with similar s. The variance in the bias estimate reduces with

the number of matched plants such that one to many matches are recommended. As before, a Kernel-based

matching estimator is a natural choice here. In either the approach with weights or with an estimated bias

term, one then finds zt that solves the fixed point problem, requiring a standard root finder. I return to the

practicalities of estimation and Monte Carlo evidence further below.

Extensions

In the following, I discuss a few important extensions to the previous setup and estimation that allow to

study more general and empirically relevant cases.

More general forms of endogeneous growth

This subsection extends the previous setup to allow for an endogenous growth process z that differentially

affects the entire distribution y. The key restriction that is required is that z keeps the relative distribution

of units unchanged, that is, z(y−1) is monotonic in y−1. The identification idea is the same as before: in the

presence of an ergodic Markov shock process s, knowing the stationary distribution of s allows to identify

changes in the entire distribution of y that is due to a general growth process z. Specifically, at the stationary

distribution of s, the quantile change in z is given by:

∆zq ≡ zt|q − zt−1|q = ∆yit|q

(Any feedback on this part is greatly appreciated!!)
7A formal treatment of optimally solving this trade-off is beyond the scope of this short note.
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Group-specific growth rates

The previous setup can easily be extended to allow for group-specific differences in the level and growth of

zt. That is, yigt = zgt + εit(εit−1). Such groups could be different industries or fixed types of firms or more

generally prices that differ across groups of products or industries. In principle, one can simply apply the

estimator separately to different groups in the data. However, this does not allow to compare the level of

groups over time. The benefit of the setup is that such level comparisons are actually possible. To see how,

note that at the stationary distribution of εit, differences in the distributions of yigt across groups capture

only differences in the level of zgt across groups. Hence, one can construct synthetic stationary distributions

of firms i within each group at time T and infer differences in the level of zgT from average differences in

yigT enforcing these group-specific weights.

Once level differences are identified, one can obtain group-specific growth rates from applying the previous

estimator for each group separately. For efficiency reasons, one may also want to exploit information across

groups. In the case of using future firms to estimate the mean reversion bias, one can then also match firms

across groups since future differential growth rates are known and one can directly match on εit.

Cohort effects and changes in entrants

Another important issue is dealing with cohort effects, which can be seen as a special case of group-

specific growth rates. In the case of firms, new cohorts of entrants may enter with different productivity.

General differences in the process of εit across cohorts are generally hard to deal with as long as one is not

willing to simply separately estimate processes for different subgroups in the data. However, one can make

further progress by only assuming that new cohorts c enter with a different level in productivity, such that:

yict = zt + zc + εict(εict−1). Similar to group-specific growth rates, one can build cohort-specific synthetic

stationary distributions and then identify zc from differences in yicT enforcing the distribution weights.

Once zc is identified, one can then identify the entire time path zt from the full sample using differences

in ỹict ≡ yict − zc. One can also make further assumptions on zc, such as monotonicity in c or a constant

trend: zc = α ∗ t. This ensures that zc is also identified for young cohorts for which synthetic stationary

distributions at T cannot be constructed.

An important remark is that the estimation of cohort effects as proposed here provides considerably more

flexibility than is commonly assumed in the literature. The reason is that the approach makes no restrictions

on changes in the distribution of entering plants over time. The approach allows each cohort of entrants to

be arbitrarily selected and also arbitrarily differ in the degree of selection across cohorts. If one is willing
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to make stronger assumptions on the initial distribution of entrants, one can also directly identify zc from

differences in the entrant distributions at entrance, using information on the aggregate zt.
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